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1, Intrnduction

In 1945 Frank Wilcoxon suggested a statistic that may be used

to test the location of a continuous symmetric population. Without

AD 769822

loss of generality, we suppose that the null hypothesis puts the
center of symmetry at zero, and that xl,xa,m,xﬂ are observations
drawn from the population. Rank these observations in order of
increasing absolute value, and attach to each rank the sign of the
coxrracponding xi. There are 2" possible patterns of signs, and
under the null hypothesis each pattern has the same probability -213. .

Let ' denote the sum of the ranks with negative sign. A small

‘ value of W constitutes evidence that the population center liec
to the right of zero.
The Wilcoxon test, based on W, 1is attractive in several
ways. The statistic itself is easy to compute., Its null distribu-
tion, which requires only the counting of the number, say #(w),

of sign pecterns giving W =~ w, provides exact significance
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form for the population (see Section 2). In normal samples, the
Wilerxon tast has the high efficiency 3/7 = ,955 1in the lirit
A8 ne-sw , relative to the t-test, and Klotz fovnd in 1963
[5] that the efficlency is also high for normal samples of sizcs
58 ns10 provided a is not too small, For populations similar
to the normal but with heavier tails, which is perhaps a typical

sltuation ia practical work, the large-sample efficiency of

Wilcoxon relative to t can be arbitrarily greater than one.
Because c¢{ the importance of the Wilcoxon test, it is
desirable to be able to find out something about the distribution
of W 1in various circumstances. For example: Does the high
efficiency in the normal case hold not only for n # 10 and

n- o but also for moderate intermediate values? Does the

agymptotic insensitivity of W to heavy tails hold also when n

‘ is small? How robust is the significance probability against

mocderate departures from symmetry?

For each of these and many similar questions, we need to find

the distribution of VW under the assumption that xl,xa,---,x“

are drawn from & populatior. with distribution G which is not

symoetric obout zero. As reviewed below, this distributional

n—

question has not proved easy. We offci here a method of approxima-
tion which seems to be useful, at least in some cascs, and then

uge it to throw some light on the specific questions asked above.
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It is easy to see that what is said also applies, with appro-
priate modifications, to another important use for the Wilcoxon
test-statistic--to test the absence of treatment effect in a
natched-pairs design. In that case, x1 represents the observed
difference in response between treated and control subject in the
ith pair., Tho random assignment of treatments gives W {its null
distribution., If we imagine a population of pairs in which X
has the distribution G, the questions of power and robuscness

may also be asked in this case., We shall however for simplicity

couch our work in terms of the one-sample problem,

2. The null distribution

Under the null hypothesis, P(VW = w) = #(w)/2n. The range
of W 1is from 0 to W, - in(n+l), and the distribution is
symmetric about #n(n+l). The function # , which is needed in
our approximation, may be computed by means of recursion on n.
Tablee J and K of [2], provide all values of #(w) for
nd12; and for w S n + 30 where n ranges between 13 and 20,
inclusive. For future reference, we show the values of # for
n =10 in Tablel, For w & n, values of # can also be read
from the partitioa function q given in Table 24.5 of [7].

In cage of large n, and w > n, the Edgeworth approximatfon

leads to the approximation




(2.1) #(w) = 2% ¢ P(W = w)

- 2% . g(z)+(1 - 3(u® - 6u + 3)/10+ (2n+l)
+3(u3 - 15u% 4 45u - 15)/3n°

+ 9(uu - 28u3 + 210u2 - 420u + 105) /800 n2]/a

where 02 = n(n+l)(204l)/b , z = [w - & n(n#l))/o and u = z°,

Formula (2.1) has relative error of order 1/n3, and Table 2

ghows that it gives excellent results at the limits of the exact

tables described above,

3. Distribution of W by numerical integration

Numerical integration gives a straightforward method of

finding the distribution of W for a given G. Suppose the

continuous G has a density g, which would be so in nearly all

cases of interest. By incdependence, the joint density of the

sample 1is g(xl)g(xz)---g(xn). The n-dimensional space may be

divided into 2" regions corresponding to the 2" patterns of

signs for the absolute values. Evaluation of the integrals of

this joint density over these 2" regions will give probabilities,

appropriate sums of which will give the distribution P(W = w).

An cffective iterative scheme for evaluating these integrals was

devised by Klotz [7], who in 1963 published results for noruwel

sauples with % & n 3 10, Ve are grateful to Professor Klotz for

aupplying us with his original results, only part of which have
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been published, iis values for n = 10 and (1,1) are shown
in the third column of Table 4. Professor Klotz points out that
the sum of his 1024 integrals is 1.0003, indicating that the fourth
decimal place is not quite reliable. The Klotz iterative formulas
were used by Arnold [1] in 1965 to obtain results for t-distributime
with the same sample eizes.

While the integration approach is straightforward, it rapidly
becomes very expensive as n increases. Not only does the number
of regions incrcase exponentially with n, but ever worse is the
increase in dimensionality. (The difficulty of accurate integration
in higher-dimensional space is discussed in detail by Milton [6]
for the related two-sample problem.) If one wishes to survey a
wide range of sample sizes and distributional shapes, integration
does not appear to be a practical approach. Experience with other
tests suggests that some sort of approximation is 1ikely to be
helpful as a suvpplement to the small-sample calculation. Fortu-
nately, it is not difficult to find moments of W for use with
approximations to its distribution.

4, Low-order moments of W

It is well known that W can be expressed as a sum of indi-
cators, which leads to expressions for its moments in terms of
certain protabilities. Ve will now record convenient formulas for

the first thrce moments:

(4.1) EM) = [ q; * (n-1) #p)+n,




(4.9)

(4.10)
and

(4.11)
(4.12)

(4.13)

and

(4,14)

(4.15)

Var (W) = [[m23~(n-2) +.m22](n-1) + malln .

u3(w) - <([m3u (n-3) +ﬂ33](n'2) + '“32] (n-1) +III31> n,

m, - P(1-p),
m,, = (p-q,)° + 3q(1-95) /2,
m23 = Q2 - qf,
myy = P(1-p):(1-2p),
my, = 64, (1-2p-q9;) - 6pq, (1-q,)
+3p"(1 + 3q) + 39, (1-q))*(1-2qp),
myy = 6ay +3q, (2-3p-3q;) + 6q] (p-2q7)

+qf (12p +8q; - 3) +p°,

my, = 93 +3r - 99,9, + 5¢li,

p = P(xl < 0) = G(0)
q = J7, a(x)6"(-x)x

Qe = P(X,,K5,000 X g < Xy, Xy < 0)
0 k
= ] o G (-x) g(x)dx

+ eee VW -
Q. = P(X50X3,0 "%y < Xps Xp > 0)
o [k .
=[5 G (-x)8(x) &,

h(x) = g(x)G(-x),
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(h.16)  H(x) = [*_ h(u)dy,
(4.17)  r = [7 h(x)H(-x)dx.

Notice that only univariate numerical integration is required by

cny of these formulas, and that all values of n are dealt with

simultaneously. We give as Table 3 the values of the coefficients
for the first three moments for the no-mal distribution A(u,1l)
with unit variance and expectation u , for some of the values

of u considered by Klotz.

5. The normal approximation

It follows from the work of Hoeffding [4] that, a8 n — o |,

gfﬁfg%g% will tend to the standard normal distribution. At
first glance, one might hope that this fact, combining with small-
sample integrations by the method of Klotz, would solve the
problem, Unfortunately, it appears that the normal approximation
is still very bad at the practicable limits of the integraticn
approach, This 18 illustrated in the fourth column of Table 4,
for a sample of n = 10 drawn from A/{(1,1). The results of
Klotz's integrations are compared with this normal approximation
(wlth.continuity correction) for E(W) = 5.125 785 and Var (W) =
23.847 590, which are the moments found by using Table 3 and

formulas (4.1) and (4.2)., Thc maximum error of the cumulative

form of the normal approximation is -0,100% ,
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The reason for the poor results is apparent if one glances
at Figure 1, which shovws the distribution of W as a histogram.
The sh.ipe 18 quite unlikc that of a normal curve, and indeed,
without Klotz's work, the mere values of E(W) and S.D.(W)
{ could have toid uz that this must be so. Since W 1is nonnegative,
it cannot be nearly normal unless E(W) 1is (say) at least 2.5
% times as large as S.D.(W). From (4.1) and (4.2), it can be

shown that this will not occur until n reaches 67, The same

P

general result is found for other population shapes than the

normal, Therefore, this reveals that the normal tendency of W

does not take effect until n 1is much larger than cen practically

be dealt with by integration. It is of course possible that some
other "smooth" approximation may be found to give much better

results. However, inspection of Figure 1, and similar figures

for other cases, does not encourage one to hope for good small-
sample results with approximations based on Edgeworth expansions
or on the Pearson femily of (uwves. We somehow need a method of
approximation that deals with the irregularities of the null
distribution ot W.

6. The average probability method

Figure 1 shows that, for the case of a sample of 10 from
N(1,1), P(W = w) tends to decrease as w 1increascs, but ia a
rather irregular way. This irregularity can be explained by the
irregularity of 4#(w) (Table 1). Thus, for cach of the values
w=0, 1 and 2, there ie only one sign pattern, and these
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Figure 2: Average probabilities of W from W(1,1), n = 10
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probabjlities decrease omoothly, At w = 3, there are however
two sign patterns, which "explains" why P(W = 3) exceeds P(W=2),
rather than continuing to decline,

Let us consider P(W = w)/#(w), the average probability of
the #(w) sign patterns corresponding to W = w, As Figure 2
shows, these average probabilities do decrease in a rather smooth
way, at something like an exponenttal rate., This suggests that

we write
(6.1) L(w) = log [P(W = w) /#(w) ],

and Figure 3 confirms the very smooth behavior, at least in this
example, of L as a function of w.

We now have an idea for a method of approximation to the
distribution of W. The values of L at the two extreme points
are known: W= 0 if and only if all the n observations are
positive, hence, we have L(0) = n loge (1-p), since #(0) =1
and the probability of a positive observation is 1 - p by (4.11);
similarly, L(wM) =n loge p . DBy assuming that L(w) behaves
smoothly between these terminal values, ve can interpclate some
appropriate smooth function, say L'. If L' 4s close to L,
thin P (u) = #(w)-e". (" will be close to P(w). Various methods
of fitting L' to L are possible. We have investigated the use
of the known moments of W discussed in Section 4, The simplest

functions with the required values at w = 0 and wy are the

-

i




10
polynomials. Of course, some other smocth functions might be
more appropriate in some cases. We shall however couch our dis-
cussion in terms of polynomial approximations which give satis-
factory results for all cases we are going to consider in the
naxt few sections.

We shall denote by L the polynowial of degree k, fitted

k?
to L by the requirements (1) that Lk(o) = L(0) and Lk(wM) -
L(WM), end (2) that the corresponding probabilities Pk(w) -
#(w)eLk(w) have the same moments as W of orders O0,1,... k-2,
We thus impose k + 1 conditions, corresponding to the k +1
cocfficients of a polynomial of degreec k.,

First, let us consider the linear interpoland, Ll(w) -

L(0) + av, where

(6.2) a; = [L(w,) = L(O) )/w, = ;'LM log le-a :

However, this interpoland will give probabilities Pl(w) which
in general do not add up to 1. A proper distributlion requires

use of the quadratic interpoland, which we shall write as

Lz(w) e Ll(w) +a, cw: (wM - wW.

2
Clearly, Pa(w) i3 monotonely increasing in a,, 80 there
exicts a unique value of a, for which XPa(w) = 1, Since the
velue of p cztermines L., which in turn determines a, and

hence L,. For any given n, P, 1s a one-parameter family of

2 2
dlstributions, governed only by the parameter p, regardless of

what the particular underlying distribution G is.
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Table 5 shows, for n = 10 and for several values of p,

the zoefficients of L and the expectation ZwPa(w) of the

2’
resulting distribution P2. In any given case, one may compare
this expectation of the approximating P2 with the true expectation
E(W), as given by (4.1), in order tuv help in judging the adequacy

of the approximation P2.

As an illustration, let us consider a sample of 10 from

WN;(1,1). From a normal table one reads that p = ,1587. Hence,

from (6.9), a, = -.303321, also a, is uniquely determined,
giving a, = ,001938. The resulting probabilities P, have
errors as shown in colummn 5 of Table &, P2 is substantially
better than the normal approximatior,, having a maximum error only
12 percent as large. Of course, we know the error of P2 only
hecause the Klotz computations are available, However, even
without thcse we could have considerable confidence in P2
because of the recadily available moment check. Intcrpolating
the fifth column of Table 4 shows that the expectation of P2
is 5,04, which is fairly close to the correct value E(W) = 5,13
obtained from (4.1).

In secking a still better approximation, it is natural next

to modify L, by edding a culic term, to obtain an approximation

2
with the correct expected value, say

L3(w) = L,(w) + 83-w-(wM-w)-(w - b3) .
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The proper values of ay and b3 are determined by the iequire-
ments that ZP3(w) =1 and sz3(w) = E(W), which may be found
numerically by inspection. (We have not proved the existcnce
and uniquenees of ey and b3, tut conjecture these properties
will hold in all reasonable cases. At least in all of our trials
the convergence to the fitted values proceeded smootihly and

wlthout difficulties.)
The search for a, and b3 is aided by knowing where to

ctart, Let us suppose that the P, approximation is a good one,

2
so that only a small cubic correction is needed, and accordingly

ag is small, Then, to a first spproximation,

Py(w) = P,(W) + a3 Py(w) w(w, - w):(w - by),

and this approximation, for each ¥ = w, has error due to

b(v)

replacing e by 1 + &(w) for small A(w), where

LA(w) = ag ¢ W (wM -w) o (w- b3). If we now impose the
requirements that zpz(w) - 2P3(w) = 1 and EwP3(w) = E(W),

we find these approximation values for a3 and b3:

* o * - *
by = S,/5,, a3 = [BW¥) - WP, )/ (S, - byS,)

where S, = Zkao(w)-w-(wM - w), Table 5 gives the values of
* *

b3 and 82 - b3 1

point for starting the search for a3 and b3. We have written

which will indicate in any given case a good

a program for the automatic conduct of the search. Once a3

and b, are found, it is easy to compute L3 and hence P3.

3
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Table | shows the results of this method in our normal example

«

Here, a3 = 0,000 013 3185, b; = 9,0378, and the searched

53 = 0,000 012 9195, b3 = 9,1249, and the agreement hctween

I'; and the Klotz values is better than that of P..

3 2
The distribution P3 will by definition have the correct

valuea et we= ) and at w = Vot

The quality of such an approximation may be judged by comparing

sz with zw2P3(w) or the corresponding variances. In this case,

and the correct expectation,

the variance of P3 is 24,75, where the correct variance of W
is 23.85., 1If the agreement is not as good as desirad, one may add
a quartic term to L3, getting

Lu(w) = L3(w) + au-w-(wM - w)e(w=-Dby)e(w-c),

where a,, bu, ¢, are determined by the requirements that P,
have thec correct moments of orders O, 1, 2. In the cases we
have examined, the quartic correction tends to be amall, and to
a good approximution with error discussed above, we obtain the

trial coefficients given by:

b, = L (5.8 - S -5, + [(4813.5" . us).s!3
Qs,e_es's-‘el 0“3 2 oY U371
&3y 2%

t 1.3 I DT~ SR B B
+(85:83)5 =1 38018, )i <1655 15, 55 8517

» t * ] ] » q
cy = (S5 = by + §,)/(5) - b, - §]

-(ﬁF'-XFP(w)HS'-(b.+c38'¢b’c'sw
3 2 UM TS T e A ¢)

7
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where SL - xka3(w) cw e (w

M " w)., Unless one is lucky, the

required moments corresponding to this set of trial coefficients

necd to be adjusted. Onz may make slight adjustments if these

values do not give Pu with moments sufficiently ~‘ose to the

true values as found by the formulas of Section 4,

The approximations P2, P3. Pu are successively more

accura‘e, as one might hope. The moaximum absolute errors are

0.,0120, 0,0083, and 0,0047 respectively. The root mean square
errors for 1 & w3 20 decrease also, being .0057, .004l, .0027,
In principle, one might now use z(w3) to add a quintic
term, but 1f the method is working well for the case at herd,

and between zw3 and

the agreement between P, andi P

3 s
$w'P, (W), should indicate that the P, approximation will

serve, There is an intuitive reason for thinking that P, 1is

4
a natural stopping point. Since both 1log P(w) and 1log #(w)
are nearly quadratic in w for large n, it follows from (6.1)
that L(w) will also be nearly quadratic in the interval near
E(W) containing most of the probabilities, For a polynomial to
accord with this shape, and also have specirfied values at the
"distant" points, w = 0 and Vi it requires five degrees of

freedom of a quartic. Thus, one may expect the approximation Pu

to agree with the asymptotic normal approximation in large sample 3,

whereas P3 could not be in general expected to do this,
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Table 4 shows, for our normal excmple, the excellent a_re. .. .-
of 2 with the results of the Klotz computations, with the
maximum error of Pu-cumulative is 0.0047, In addition,

£w'P,(w) = 642,4183, so that P, has standardized third moment

A ma et By e i R i

1,211, compared with the value 1,268 for W, This shows that the
skewness of this approximating Pu seems to be about right, While
computations like those of Klotz will seldom be available for a

check, this third-moment check can be made in general, as can the 4

reassurance of finding Pu close to P3.

We have also tried out the average-probability method on
the corputations of Arnold, for a saumple of size n = 10 from
a re-scaled t-distribution with four degrcas of freedom, and for

shift y = 1,0, By examining the probabilities published by

Arnold, we concluded that for w & 3, they appear to have a
smooth behavior., Hence, we applied our method to approximate
distribution of W for 3 5w s £5, For w< 3, one can alvays
ure the formulas stated in Section 7. The results are &again good

for P although not as good as in the normal example. The

ui
reacon appears to be the exceptionally heavy teil of t,. The
maximum differencc between P3 end P 1is 0.0017, where the
maximum error of the Pu-cumulative is 0,008 from Arnold's results.,

Ic¢ is also necessary to point out situations when our

approximation does not seem to wcr'' too well, One intuitive case

we have at hand is t, with sarple s8lze n = 10 and shift .=1.0,
)
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After reviewing some of the probabilities published by Arncld,

we realize that, with its extremely heavy tail, the assumption we
mede for our method, that L behaves smoothly between the two
extremes, is not satisfiod, As mentioned by Arnold, there is
aimost a complete breakdown in order for the case of 4 degree
of freedom in t-distribution. For instance, with w = 9, #(9) =8,
there is one dominating factor corresponding to the sign pattern
(#, +, +, +, +, +, +, +, -, +) with probability 0.0498; when

w = 10, #(10) = 10, with dominating probability 0.1793, and
waen w = 11 #(11) = 11, the dominating probability is only
0.0258, This irregularity of course lies on the fact that t%
has an extraordinary heavy tail, and this leads us to believe that
the average-probability method will not perform well in such cases.

7. Aa additional check

Wthile computations by numerical integration of the entire
distribution of W 1is scldom available and not casily done, it
is not too difficult to get correct probabilities for small values

¢f V. One can easily express these probabilities as univariate

integrals:

(7.1) P(W ~ 1) =n [ gx)(1 - 6(-x) " &

(7.2) P(W = 2) = n(n-1) [°_ g(x)+[G(-x) - G(0) ] [L - 6(-x) "
(1.3)  P(w=3)= A2 0 gy 15(x)-6(0) 1P [(2-6(-x) I3 e

#a(n-1)[° g(x)[6(0) - 6(x)]-[1 - 6(-x) ™ ax,
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We have found by numerical integration for tlie case of Table 4
that
P(We=1) = ,11365
P(W=2) = ,07501
P(W = 3) = .10360
vhich verify the results obtained by Klotz,

The probabilities for small w can be used to check on the
adequacy of the L-approximations. Alternatively, they can be used
to permit L to be interpolated between w = 3 and Wi rather
than w = 0 and Wpe As in the t,-case of the preceding section,
this 1is likely to be useful in irregular situations.

In a similar way, P(W=w) for 4 # w3 8 can be computed
by bivariate integrals, and then L could be interpolated between
we8 and w=uw,.

M
8. Normal camplecs of moderate size

The Pitman analysis shows that, with very large normal
samples, the relative efficiency of the Wilcoxon test to the
t-test is 3/m = 0.955. Based on his computations for 5 $ n & 10,
Klotz fourvi that efficiencies lie in the range of (.955, .986)
for .01 3a & ,10 , (The efficiencies were lower for very
gunll a,) Thase facts have led to a widespread belief that the
eificiency of the Wilcoxon test is high in all normal cases wiien
the value of a 1is not too small. There has of course remained

the pocsibility that the efficiency was less good for moderatz

valiies of n than for values at either extreue,




S Y T R R O R R BRL T b e o i

18
To throw some light on this question, we have applied the
average-probability method to a sample of n= 20 from (.75, 1).
This computation requires #(w) for n = 20 recorded in Table 2.
We found that L(0) = -5,139 885, L(210) = -29,688 965,
a, = -0.116 900 38, a, = -.000 135 9136, &, = -,000 000 2592,

by = 40.0236, &, = -.000 000 003 484, b, = 26,6508,

c, = 62,8990, Table 6 shows excerpts from the cumulative forms

of the distribution P, and Pk' The good agreement of these

3
epproximations, together with the satisfactory agreement of the
standardized third moment for P, (0.644) and W(0.664) lends
confidence to the results,

As an additional check, we hase evaluated (7.1), (7.2) and

(7.3), with these results:

P(W = w)
w by integration | approx. P,
1 0.0050 .0051
2 0.0043 L0044
3 0.0074 .0076

From this Pu-approximation, we find the following cfficiencies

for n= 20:
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a = B = p for t-test Relative eff.
W ru[w 3 w) P,(W>w] n=19 ne20 of W to ¢t
45 0.01198 0.209%94 0.21888 0.19289 0.9672
52 0.02422 0.12760 0.13251 0.11415 0.9634
61 0.05270 0.06153 0.06335 0.05310 0.9588
66  0.07682 0,03938  0.,04032 0,03328 0.9567
69 0.09467 0.02972 0.03049 0,02482 0.9568

b e it R

9. The Wilcoxon distribution in a heavy-tailed case

Many statisticians consider that actual distributions found
in practical work tend to resemble a normal, except that in some
cases their tails are heavier than the very exiguous nommal tails,
corresponding perhaps to an occasional gross error. Such a
departure from the normal shape can increase the population
variance substantially, to the severe detriment of the large-
sample performance of the t-test, On the other hand, this sort

of departure from normality will have very little etffect on the
; integral of the square of the populstion density, which governs

the large-cample performance of the Wilcoxon test. Accordingly,

the Pitman analysis shows that Wilcoxon can be substantially
svperior to t in such cases.

This is of course pertinent only when the sample is
suificiently large. 1If the sarple is small, it would seem quite
likely that none of the sample values will come irom the tails,

so thet in effect one is sampling from the "normal" part of %he

dolas 2 ek ety S e = b

. 1;'_&:“;&.' £
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population. In that case the t-test should be superior. It is
natural to pose a question: how large must the sample he before
the hoavy tails can exert their baleful effect on t relative
to W? An investigation of this important question has becn
hindered by the fact that it is difficult to calculate the pover
of either test. The average-probability method permits one to

obtain a reasonably good spproximation for the power of W.

We present some results, partly in the hope that they may stimulate

someone to think of a good way to do the same for the t-test, so
that the comparison may be completed.

Let us take as our heavy-tailed distribution a Tukey model
consisting of a blend of 97% from M(1,1) and 3% from a normal
with the same expected value 1, but with standard deviation &,
For a sample of n = 10 from this distribution, we find that
L(0) = -1.814 432, L(55) = -17.961 627, a, = -0.293 585 36,

= -,001 785 78, a, = 0.000 049 611 2, by = 9,8276

a5
a

3
y = --000 003 6214, b, = 6,244k and ¢, = 18.6004. Table 7

:hous the cumulative forms of the distributions of P3 and Pu.
Agreement is again good, also for the standardized third-moment

check, vith 1.122 for P, and 1.156 for W.

As an additional check, we used the integrals of Section 7:

P(W = w)
w by integration by P,
1043 .1058
0690 .0700
0954 <0942
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All checks indicatc that our Pu-approxivation is performing vell
in this heavy-tailed case.

With this blending of a Tukey model, the number of gross
errors, G, is binomial (n = 10, p = 0,03) where P(G = 0) =
0.737 424, In other words, it may be quite likely, with probability
0.737 424, thac all the 10 sample values will be from pure ¥(1,1),
for which case we have discussed in Section 6. One interesting
point here is that, by subtracting this out, we are able to get
the conditional distribution of W given G > 0. That is,

knowing that some gross error occurred in this sample of 10,
1
POW = wlG > 0) = 7557 578 Ppure w(1,1) (¥ = ¥
- .T37 k24 < P, (W =w)].

10, Robu3tness of the Wilcoxon test against asymmetry

The Wilcoxon one-sample test is intended to test the location
of the center of symmetry of a symmetric population. Any actuil
population will be asymmetric, at lcast to some extent, It is
accordingly important to know iow robust the test is against
asymmetry. That is, we need to find out how the actual significance
probability cowpares with the nominal value given by the null
distritution, in case the population is centered at zero but ic
moderately asymmetric., The averege-probability method can throw
some light on this important question.

Before this problem can be tackled, it is necessary to

decide what is meant by the "center" of an asymmetric population,
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The concept of center is naturally related to the statistical

tool being used. If one works with the sample mean, then the

population mean is the natucal center, at least with large samples;

simlilarly, the sample median calls for the population median; and
so forth. What is the "Wilcoxon center" of a population?

Let us seek to define center in such a way as to promote
the robustness of the sigrificance probability. That is, we
want the distribution of W, when the population is "centered"
at 0, to resemble the null distribution in Section 2. T7This
distribution is (except for very small n) nearly normal, so
presumably W will continue to be something like normally dis-
tributed for mildly asymmetric populations. To keep the distri-
bution of W nearly the same, we try to keep its location and
scaling nearly the same.

In the symmetric case, if the null hypothesis is true, then

q = 4 and p =%, so that
E(W) = [ qy(n-1) +p] + n = § n(n+l).

Oue may secek to define center in general so that, under the null
hypothesis, one will continue to have q; = 4 and p = 4, and
thus W will continue to be centered at 4 n(ntl), as in the
syametric case. Unfortunately, it turns out that this is in
general impossible: 1f we locate the population so that q, - 5,

then p will differ at least slightly from 4, and vice versa,
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At leist when n is large, the dominant term of E(W) 1is the

one involving qq . We are led to the idea of defining ceater so
that, when the population is centered at 0, gq; = 4. Rccalling
that 9 is the probability that X, + x2 < 0 or equivalently
tuat ﬁ(x1 + x2) < 0, we see that this event will have probability
4 1f the median of the distributicn of b(x; +x,) 1is located

at 0., We are led to define: The Wilcoxon center of a populatinn

is the median of the mcan of two observations therefrom. We note

that in the symmetric case, this definition yields the conventional
ccenter of symnetry.

In genaral, with this definition, p will differ slightly
from % for moderately asymmetric populations, and hencez E(V)
will not quite coincide with & n(n+l), though it will be so
very near 1f n 1s large. MHouever, the only way to force
E(/) = § n(a+l) would be to have the definition of the center
of the population depend on the size of the sample, and that
would be peculiear,

Let us illustrate these ideas. Consider the chi-square
distributiun vith 10 degrees of freedom, depicted in Figure i,
This population has the sort of moderate skewmess, with standardize:
third moment of 0.894 427, that might be encountered in practice
in cases when the population was thought to be symmetric, I
Xy, and X, are observetions, independently, therefrom, then

X, + X, has the chi-square distribution with 20 degrees of freedcm

-




4
whose median is 19.337. Thus, the median of the distribuvtion of

b(X, +X)) 18 9.6685, that is, P(4(X; +X,) < 9.6685) = },

2)
and the Wilcoxon center of xfb is at 9.€685, For comparicon,
the median is 9,6685, the mode is 8,00, and the cxpectation

is 10,0, as illustrated in Figure 4, If we translato the

A
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Figure 4

population to bring the Vilcoxon center to O, then
p= P(x1 - 9.6685 < 0) = 0.53. Accordingly, under the null

hypothesis that the Wilcoxon center is at O,
E(W) = 4(n-1)°n + 0,53 n = § n(n4l) (1 + u;!i.({_?o)_]

at n = 10, we get E(W) = 27.8 instead of the desired 27.5.
Since S.D.(W) 1is approximately 7.8526, the discrepancy of 0.3
in the expected value of W 18 not especially important, &nd
it would be even less s0 as n 18 increased above 10.

The magnituie of the departure of p from 3 1in typical

cesen can be assessed by examining the Edgeworth expansion:

P = P[X; < med (% (X4 +-X2))] - Fz(z)
n 0(2) - 1392 (2) + P (2) + 3 0205 (2) )

- oM (2) +ngeny 9l () #3302 ) 4 oo
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where
m‘d. = m

% TSDX)

In oxrder to determine how far out should one carry for this

1

erpansion, one needs to examine the value determined in cach

batch ([ ]), which contains terms of the sanc order of convergerce,
1f the value of a certain batch is small compared to the sum of

the previous terms, one neced not go any further, To i)lustrate

this point, let us work out, for example, xfo with n = 10:

z= 0,074 126

wher2 the sum of the first 4 terms sum up to 0.529 918. Adding
in the next three terms will give p = 0,530 418, For our purpose,
p=0.53 will serve.

Let us now return to the robustness question. Suppose ve
have been given a specific asymmetric distribution, and have
transleted it to bring the Wilcoxon center to 0. This will make
q = 4 and will yield a specific value of p. Accordingly, for
a qiven scmple size, E(W) 1is determined., We may therefore apply
the average-probability metihod to yield an approximating distribu-
tion P3. Therefore, we have in P3 a one-paramector family of
cirtributions determinad by the paremeter r., By the formulas
of Section 4, we can calculate Var(W) and u3(W). This pormits

th2 refinement of P3 to Pa, and a third-moment check on the

edequacy of the Pu approximation,
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We have carried out thils proccss for the xfo examplao, for
n e 10:

E(W) = (.249986 (n-1) + .529958) . (n) = 27.8

Var (W) = [(.084377 (n-2) + .375899)(mn-1) 4+ .249103 ].n
= 97.0735
ua(W) = ([(.009280 (n-3) + ,037334)(n-2) - ,000113)
¢ (n-1) - ,014925) « n
= 73.49325
with standardized third moment 0.076842. We also found by the
average-probability method,
L(C) = -7.550 226, L(55) = -6.348 783
81 = 0,021 844 418, *12 = -,000 00F k499,
a3 = -.000 037 473 2, b, ~ 28.32399
a, =.007 200 018 749, b, = 19.33199, ¢, = 36.44021.,
Table 8 shows excerpts of the Pu-cumulative. At a first glance
et some of the values shown, say, if you will reject if W 3 9,
then the significance probability shown by this approximation is
2.5574 , where the nominal value given by the null distribution
is 3.2234, This does not sound too appealing.
However, it 18 amazing how gocd the result will be, if one
is dring a two-tailaed test, For example, if one is willing to

reject if W& 9 or W& 46, the nominal value will give 6.h46%,




P“

and the significance probability will add up to 6.609%. The
reason that neither of the one-tailed test is too encouraging is
due to the skewness based on this asymmetry distribution xfo.
But whien one is doing a two-tuiled test, the significance prob-
abilities of both sides seem to balance out. Thus, one may
conclude that the robustness property of Wilcoxon test agaiuat

asymnetric distribution owns a much more sound evidence in the

case of two-tailed test than either tail.




I R R N R T R TR T L g r e g o b o "‘1:]
b ., 3

b -

Table 1
#(vw) for n =10

#lw) . ow o (W)
1 | 1 17
1 1 ! 15 20
2 1 J 16 20
3 2 1 17 24
4 2 : 18 27
5 3] 19 @
6 4 20 31
7 5 21 33
8 6 22 35
9 8 23 36
, 10 10 24 38
11 11 | 25 39
12 13 26 39
13 15 27 40
|
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Table 2.

v Aw)
#(w) approx,

75 753

87 &7.0
101 102,0
117 118.0
135 136.0
155 156.3
178 178.9
203 04,2
231 232.4
263 263.7
297 298.3
335 336.5
378 378.6
424  424,8
475 475.5
531 530.8
591 591.3
657 657.0
729 728.3
806 805.6
889 889.1
980 979.2
1076  1076.0
1180 1180.0
1293 1291, 4
1411 1410.4
1538  1537.4
1674 1672.5
1817 1816.1
1969 1968.2

#(w) and approximation (2.1) for n = 20

w
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
€8
69
70
71
72
73
T4
i3
76
77
78
79
80

#(w)
2131
2300
2479
2668
2865
3071
3288
3512
3746
3991
4ou2
4503
Y7TY
5051
5337
5631
5930
6237
6551
6869
7192
7521
7851
8185
8523
8859
9197
9536
9871
10206

w #(w)
approx.

2129.1
2299.0
2478,0
2666, 2
2863.6
3070.3
3286.4
3511.7
3746,2
3989.8
4242,3
4503.6
4T773.4
5051.4
5337.2
5630.6
5931.0
6238.0
6551.1
6869.7
7193.2
7521.0
7652.3
81£6.5
8522.8
3860.4
9198.,5
9526,1
9372.5
10206.7

81
82
83
84

86
87
88
89

91
92
93
ok
95

97

99
100

101
102
103
104
105

T R Y VT T W SRRy T T

#(w)
10538
10864
11186
11504
11812
12113
12407
12689
12961
13224
13471
13706
13929
14134
14326
14502
14659
14800
14925
15029
15115
15184
15231
15260
15272

w #(w)

aprrox.
10537.7
10864 .8
11186.9
11503.0
11812.3
12113.7
12406.3
12689.3
12661.7
13222.6
13471.1
13706 .4
13927.8
14134,5
14325.7
14500,.8
1.639.1
14800, 2
14923.6
15028.7
15115, 2
15132.8
15231.3
15260.4
15270.2
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Table 3. Coefficients of first three moments of W
(w,1) L= 0.25 (.25) 1.50

w&l «25 «50 15 1,00 1.25 1.50
P 401 293 ,291 160 .226 627 .158 655 .096 800 .066 807
q, .361 835 ,234 235 144 422 ,078 650 ,037 574 .016 947
. .240 257 .206 386 175 267 .133 484 ,087 430 .06z 344
s .347 923 ,277 200 .192 104 115 097 .058 567 .027 476
,3 .075 340 .056 585 .033 799 .016 881 .006 946 .002 403
my, .O47 430 .086 203 ,095 827 .091 128 ,070 504 ,054 Ol4
ms .225 539 .345 618 .333 059 .243 020 ,.137 157 .070 001
my3 <147 244 ,201 906 .173 162 .103 50 ,045 998 ,017 046
.019 875 ,030 189 ,019 515 ,009 968 .,003 798 .001 058
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Table 4, Comparison of Klotz's cumulative probabilities

! and normal approximation for (1l,1), n = 10,

A together with the error shown for the approximating
i P2, P3 and Pu

Klotz 10“ X Error of
I ) ##(w) P(W & w) Normal P, P3 P,

4 i
i 0 1 1777 - 59 0 0 0 |
1 1 . 2914 -.625 + 45 +38 =27

"‘ 2 1 .366% - 710 + 84 +70 -47
3 2 L4700 -1004 +105 +78 =40
Y 2 .5397 - 907 +120 483 -37 '
5 3 6124 - 819 +114 467 -18
6 Y .6804 - 695 + 85 +31 -17
7 5 . 7379 - 513 + 65 +5 -37
8 6 . T84T - 295 + 51 -11 =44
9 8 8275 - 127 + 39 -3 -i5

10 10 .8633 + 6 + 34 -2( -36
11 11 .8914 + 127 + 30 -2 -20
12 13 .9146 + 199 + 21 -32 -21
e 15 .9328 + 240 + 18 -29 -11
14 17 9476 + 249 + 12 =30 -6
15 20 . 9600 + 232 + 6 -31 -4
H 22 .9693 + 208 + 4 28 + 1
17 24 . OT6H + 180 + 3 -24 + 6
13 27 .9822 + 147 + 1 -21 + 7
13 29 . 9866 + 118 0 -18 +9
2 31 . 9899 + 93 0 -15 + 9




Table 5. Given n = 10
p ., E(W) by 8, - by,
02500 -,01634063 .31381 1.83707 22.15959
05000  -,00904215 . 79815 2,97823 169.80828
07500 -.00579759 1.47716 4,28975 620.71346
. 10000 -.00400116 2.34955 5.68875  1562.50147
.12500  -.00288508  3.39762 7.11726  3122,03702
.15000  -,00214043  4.59610 8.54549  5343,75854
.17500  -,00161469  5.91989 9.96180  8200.59779
.20000  -.00122953  7.34483  11,36261 11609.u4u4u2k
.22500  -,000939%0  8.,84901  12,74807 15449.32008
.25000  -,00071599 10.41587  14.12031 19581.89779
.27500  -.,00054129 12,03147  15.48157 23859.44368
30000 -.00040333  13,68448 16,3394  28134,.12860
.32500  -,00029388 15,36601  18,17928 32264.89875
« 35000 -.00020715 17,06903 19.51912 36121.u49424
37500 -.00013905 18,78805 20.85475 39587.65504
.40000  -,00008661 20.51871  22,18717 42562.86995
42500 -.00004772  22,25764 23.51725 44963.98652
45000  -,00002075  24.00459  24,8457F  46729.T3432
47500 -,00000517  25.75C43  26.17310  47801.99147
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Table 6.

The cumulative probahilities of approximating

4

and P, from M0.75, 1) with n = 20

3
v #(w) P3(w 8 w) Py (W & w)
0 1 .0059 .0059
1 1 .0109 .0109
2 1 .0153 .0153
3 2 .0230 0229
4 2 .0296 .0295
5 3 .0382 .0381
6 b4 .0481 0480
7 5 .0589 0587
8 6 .0701 .0699
9 8 .0831 .0828
10 10 .0972 .0968
11 12 1119 1113
12 15 .1278 1272
13 18 144y 1437
14 22 .1620 1611
15 27 .1807 1798
16 32 ..2000 1990
17 38 . 2200 .2188
18 L6 . 2409 . 2397
19 54 .2623 . 2610
20 64 . 2343 . 2829
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Table 7. Excerpt of the cumulative probabilities of the

approximating 93 and P, from Tukey's model--a blend of

0.97 from X(1,1) and 0,03 from ¥(1, '); n = 10

w #(w) Py (W 3 w) P, (W @ w)_
0 1 .1629 . 1629
1 1 .2707 . 2687
2 1 3426 .3387
. 3 2 .4396 L4330
4 2 .5055 4973
5 3 .5734 .5642
6 4 .6360 .6266
7 5 .6906 .6818
8 6 .T367 .7291
9 8 . 7803 . TTHY
’ 10 10 .8192 .8154
26 39 .9952 .9977
27 40 . 9964 . 9984
28 40 .9973 .9989
29 39 .9980 .9993
30 39 .9985 .9995
{ 31 38 .9989 .9997
| 32 36 .9992 .9998
% 33 35 . 9994 .9999
' 34 33 9996 9999
35 31 .9997 1.0000
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Table 8, Pu-cumulativo of Wilcoxon

distribution from xo, with n = 10

' W N(W) P, -cum W N(W) P,-cum
| 0 1 0005260 40 20 8928811
] 1 0010943 41 17 9094992

| 2 1 0017046 42 15 9243857
: 3 2 0030076 43 13 9375258
| y 2 .0043908 4% 11 9488886
5 3 0065813 s 10 9594839

6 Y .0096488 46 8 .9682115

7 5 0136563 47 6 9749787

8 6 .0186585 "8 5 9808340

9 8 .0255651 49 4 .9857195

. 10 10 0344671 50 3 .9895591

11 11 0445238 51 2 . 9922548

12 13 .0566837 52 2 .9951082

13 15 .0709878 53 1 9966265

14 17 0874601 54 1 9982513

15 20 1070904 55 1 1.0000000
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